Why Can't Magnetic Pumps Run Dry?

    Magnetic pumps are widely used in industries such as chemicals, pharmaceuticals, and environmental protection due to their unique design that effectively prevents medium leakage. However, there is a significant operational limitation with magnetic pumps—they cannot run dry. So, why is it that magnetic pumps can't operate without liquid? This article will provide a detailed explanation.

    Working Principle of Magnetic Pumps

    To understand why magnetic pumps cannot run dry, it's essential to grasp their working principle. Magnetic pumps transfer power through magnetic coupling. Typically, the driving end and the driven end of the pump are connected via a magnetic coupling, and the impeller inside the pump rotates under the influence of this magnetic force, thereby propelling the medium to flow.

    Unlike traditional mechanical seal pumps, magnetic pumps have a completely sealed pump chamber with no shaft seals, which eliminates the possibility of leakage. This seal-free design makes magnetic pumps particularly suitable for applications that require high levels of sealing, especially when handling toxic, flammable, or corrosive media.

    The Dangers of Running Dry

    When a magnetic pump operates in a dry condition, meaning the pump chamber is devoid of any liquid medium, the magnetic coupling and other components inside the pump continue to rotate at high speed. This can lead to several problems:

    1.Overheating:

    Under normal operation, the liquid medium inside the pump acts as a lubricant and coolant. Without liquid, friction between components generates a significant amount of heat. Since the pump is designed to be completely sealed, the heat cannot dissipate quickly, potentially damaging the magnetic coupling and other critical components due to the rapid increase in temperature.

    2.Damage to the Magnetic Coupling:

When running dry, the magnetic coupling may overheat, leading to demagnetization or damage, causing it to lose its ability to couple magnetically. This not only results in the loss of the pump's drive function but also can lead to overall pump failure, which can be costly to repair or replace.

    3.Wear and Tear on the Impeller and Bearings:

    In a dry-running state, there is no liquid medium to reduce friction, causing direct contact between the impeller and bearings, leading to significant wear and tear. This drastically shortens the pump's lifespan and can even result in sudden pump failure.

    How to Prevent Dry Running?

    To ensure the safe and efficient operation of a magnetic pump, it's crucial to avoid dry running. Here are some common preventive measures:

    1.Install a Liquid Level Detection Device:

    A liquid level detection device can be installed in the pump's inlet pipe or storage tank. If the liquid level is too low, the device automatically stops the pump to prevent dry running.

    2.Set Up Pump Protection Devices:

    By installing pump protection devices, such as temperature sensors or flow sensors, the pump can automatically shut down if the internal temperature becomes abnormal or if the flow is insufficient, thereby protecting the pump from damage.

    3.Regular Inspection and Maintenance:

    Regularly inspect the pump's operating conditions to ensure there is always sufficient medium inside the pump, and conduct timely maintenance to prevent dry running due to worn-out components.

    Conclusion

    The primary reason magnetic pumps cannot run dry is that they rely on the liquid medium for cooling and lubrication. Without the medium, the pump's components can quickly overheat and wear out, potentially causing severe damage to the pump. Therefore, understanding and implementing preventive measures to ensure that magnetic pumps operate under the right conditions is key to extending equipment lifespan and ensuring safe production.

Comparing and Contrasting Block Collecting Machines Which One Is Right for You?

If you’re in the market for a block collecting machine or a brick collecting machine, you may find yourself overwhelmed with the various options available. From manual machines to fully-automatic ones, the choices can be confusing. In this article, we will compare and contrast different types of block and brick collecting machines to help you make an informed decision.

Manual Block Collecting Machine

A manual block collecting machine is the most basic option available. It requires human intervention to operate, as the name suggests. Although these machines are more affordable initially, they can be time-consuming and are suitable for small-scale operations. They require manual labor and limited automation.

Automatic Block Collecting Machine

For those looking for more efficiency and productivity, an automatic block collecting machine is a better choice. These machines feature automated mechanisms that collect blocks or bricks without the need for constant manual assistance. With increased speed and reduced labor requirements, these machines are suitable for medium-scale operations.

Fully-Auto Block Collecting Machine

Taking automation a step further, fully-auto block collecting machines offer a higher level of convenience and efficiency. These machines work seamlessly with the block production line, automating the entire process from forming to collecting. Fully-auto machines are ideal for large-scale operations, as they can significantly increase productivity while saving on labor costs.

Manual Brick Collecting Machine

Similar to the manual block collecting machine, a manual brick collecting machine is operated manually and best suited for smaller projects. While it may be less expensive upfront, it requires more human intervention and may not be suitable for larger brick production requirements.

Automatic Brick Collecting Machine

An automatic brick collecting machine combines the benefits of automation with the specific requirements of brick production. These machines offer efficient, hands-free brick collection, reducing labor and increasing productivity. They are suitable for medium-scale brick production projects.

Fully-Auto Brick Collecting Machine

When it comes to large-scale brick production, a fully-auto brick collecting machine is the way to go. With complete automation and integration into the brick production line, these machines maximize efficiency and output, making them ideal for large-scale brick manufacturing operations.

In conclusion, choosing the right block or brick collecting machine depends on the scale of your operation. For small-scale projects, a manual machine may suffice. If you require increased productivity, an automatic machine is a better choice. For large-scale operations, fully-auto machines offer the highest level of automation and efficiency. Consider your production requirements and budget to make the best choice for your needs.

What is The Spray Rating Tester For Protective Clothing GT-C31

What is The Spray Rating Tester For Protective Clothing GT-C31


In industries where protective clothing is essential, ensuring the garments' water resistance plays a crucial role in determining their durability and effectiveness. The Spray Rating Tester For Protective Clothing GT-C31 is a vital tool in evaluating the water repellency of protective fabrics. It simulates real-world conditions by spraying water onto textile samples to assess their surface wetting resistance. This article will explore the importance of water repellency testing in protective clothing and provide an in-depth overview of the Spray Rating Tester GT-C31.

Importance of Water Repellency in Protective Clothing
Protective clothing is widely used in sectors such as healthcare, firefighting, industrial work, and outdoor professions where exposure to water, chemicals, and hazardous substances is frequent. The ability of the fabric to repel water is critical because it ensures the wearer's safety by keeping harmful liquids at bay. The Spray Rating Tester GT-C31 provides an efficient method for determining how well fabrics perform in preventing surface wetting, which is especially important for garments exposed to rain or chemical splashes.

Understanding the Spray Rating Tester GT-C31
The Spray Rating Tester GT-C31 is designed specifically to simulate light rain conditions, allowing manufacturers and quality control professionals to measure fabric performance in repelling water. The tester uses a precise method to evaluate surface wetting by spraying water on a sample fabric at a controlled angle and height, as specified in international standards.


Step-by-Step Process of Spray Rating Testing
To understand how the Spray Rating Tester GT-C31 works, let’s break down the test procedure into its key steps:

Step 1: Sample Preparation
Begin by preparing a 180mm x 180mm textile sample. The textile should be representative of the material used in protective clothing to ensure accurate results. Once ready, the sample is installed on the fixture to secure it in place for testing.

Step 2: Securing the Sample
The fixture with the textile sample is then fixed on the 45° test station. This angle ensures that water is sprayed in a manner that mimics natural rain hitting the fabric surface.

Step 3: Funnel and Baffle Placement
A test funnel is placed in the fixed ring above the fixture, and a baffle plate is positioned in the center of the funnel. The baffle ensures that the water is distributed evenly across the textile sample during the test.

Step 4: Measuring Distance
Next, measure the distance between the bottom of the funnel and the sample surface. The prescribed distance is 150mm, but this height can be adjusted based on specific testing requirements.

Step 5: Water Application
Pour 250ml of distilled water into the funnel. The spray time is crucial and should fall between 25 and 30 seconds to ensure consistent results. The controlled flow rate replicates rain conditions that the protective clothing may encounter in the real world.

Step 6: Evaluation of Results
Once the test is completed, remove the textile sample from the fixture and compare it against the standard rating cards. These cards help in assessing the water repellency of the sample based on the degree of surface wetting observed.

 

Why Choose the Spray Rating Tester GT-C31?
The Spray Rating Tester GT-C31 offers a reliable and standardized method to evaluate water repellency in protective fabrics. It is widely used by manufacturers, research institutions, and testing laboratories due to its precision, ease of use, and adherence to international standards such as ISO and AATCC.

1. Precise Measurements: The Protective Clothing Spray Rating Tester  ensures that each test is conducted under controlled and consistent conditions, leading to accurate and reliable results.

2 .Standardized Testing: It complies with international standards for water repellency testing, making the results widely accepted across industries.

How to Operate the GT-LB06A Chair Front Stability Testing Machine

The GT-LB06A Chair Front Stability Testing Machine is a specialized device designed to evaluate the forward stability of chairs, ensuring they can withstand everyday use. This article provides a comprehensive guide on how to operate the Chair Front Stability Testing Machine effectively, along with insights into its importance in product testing.


Introduction to the GT-LB06A Chair Front Stability Testing Machine
The GT-LB06A Chair Front Stability Testing Machine is engineered to simulate the forces that a chair might encounter during normal usage. By understanding how to use this machine, manufacturers can ensure their products are safe and stable.

Step-by-Step Operation Guide

1. Preparation

Before beginning the testing process, make sure that you have the following:

2. Setting Up the Machine
2.1 Connect the Power Supply:
Plug the machine into a suitable power outlet.
Turn on the power switch to initiate the machine’s operation.

2.2 Marking the Chair:
Take the chair you wish to test and mark the position of the loading point 60mm from the edge. This step is crucial for accurate testing, as it indicates where the force will be applied.

3. Preparing the Chair for Testing
3.1 Positioning the Loading Pad:
Place the loading pad on the marked point. The center of the loading pad should align with the marked line on the chair.
Secure the loading pad in place using string to prevent any movement during testing.

3.2 Mounting the Chair:
Install and fix the chair onto the GT-LB06A Chair Front Stability Testing Machine. Make sure the chair is stable and securely mounted.
Adjust the chair so that its center is aligned with the weights that will be applied during the test.

4. Setting Up the Weights
4.1 Adjusting the Chair Wheels:
Ensure the chair wheels are positioned close to the stopper to avoid any unintended movement during the test.

4.2 Controlling the Weight Lifter:
Use the control to lift the weights to the specified height. It’s important to support the weights by hand as they rise to prevent them from tipping over.

4.3 Installing the Loading Head:
Select the appropriate loading head from the C-buckle and install it securely.

5. Attaching the C-buckle and Chain
5.1 Positioning the C-buckle:
Insert the C-buckle into the center hole of the loading pad.
Connect a chain from the bottom of the C-buckle, ensuring it is of suitable length. The other end of the chain should be attached to the weights.

6. Conducting the Test
6.1 Lowering the Weights:
Carefully lower the weight disc so that it is disengaged from the weights.

6.2 Applying Horizontal Force:
At the loading point on the chair, apply a horizontal force of 20N. Observe the chair’s response to this force.
Check to see if the chair tilts. If it does, this indicates instability, and further evaluation may be necessary.

6.3 Importance of Chair Stability Testing
Testing for chair stability is not just about meeting regulatory standards; it’s about ensuring the safety and comfort of users. A chair that tilts or tips over can lead to accidents and injuries, undermining consumer confidence in a brand. The GT-LB06A Chair Front Stability Testing Machine helps manufacturers identify potential flaws in design or construction before products reach the market.

Unleashing the Power of Dynamic Fatigue Testing Machine A Game Changer for Fatigue Testing Enthusiasts

Fatigue testing machines are essential tools in various industries to assess the durability and reliability of materials and components under repeated stress. These machines have revolutionized the way products are designed and tested, ensuring their longevity and safety. Among the different types of fatigue testing machines, the dynamic fatigue testing machine stands out for its unique features and exceptional benefits, making it a top choice for fatigue testing enthusiasts.

1. Unparalleled Testing Capability

The dynamic fatigue testing machine takes fatigue testing to new heights with its ability to simulate real-life loading conditions more accurately. By generating dynamic loads in various forms, such as tension, compression, bending, or torsion, this machine unleashes the true potential of materials and components, subjecting them to realistic and rigorous testing. This ensures that the final product can withstand the demanding loads it will encounter during its operational life.

2. Flexibility for Diverse Applications

One of the incredible benefits of the dynamic fatigue testing machine is its versatility. It can be configured to conduct tests on a wide range of materials, including metals, composites, plastics, and more. This flexibility allows researchers and engineers to evaluate the fatigue behavior of different materials and determine their limitations, leading to the development of stronger and more durable products. Whether it’s for aerospace, automotive, construction, or any other industry, the dynamic fatigue testing machine rises to the challenge.

3. Real-time Monitoring and Analysis

To gain deeper insights into material behavior, it’s crucial to monitor and analyze test data in real-time. Dynamic fatigue testing machines excel in this aspect by offering advanced monitoring and analysis features. With precise sensors and sophisticated software, these machines capture crucial information like stress, strain, displacement, and frequency response during testing. This real-time data enables researchers to make informed decisions, identify fatigue failure patterns, and optimize material performance accordingly.

4. Enhanced Safety and Accuracy

Safety is paramount in any testing environment. Dynamic fatigue testing machines prioritize safety by incorporating robust safety mechanisms to protect operators and prevent any potential accidents or damages during testing. Additionally, these machines are designed with utmost precision to ensure accurate and reliable results. This eliminates any margin for error and provides confidence in the test outcomes.

5. Time and Cost Efficiency

With its ability to simulate real-life loading conditions and comprehensive testing capabilities, the dynamic fatigue testing machine saves significant time and cost. By identifying potential design flaws, weak points, or optimal material combinations early on in the testing process, companies can avoid costly mistakes and reduce product development cycles. This translates into faster time-to-market and increased profitability.

Conclusion

The dynamic fatigue testing machine is a game-changer for fatigue testing enthusiasts, offering unparalleled testing capabilities, flexibility, real-time monitoring and analysis, enhanced safety and accuracy, as well as time and cost efficiency. By harnessing the power of this exceptional machine, industries can bring forth innovative products that exceed customer expectations and withstand the test of time. Embrace the dynamic fatigue testing machine and unlock the true potential of your materials and components.

Nanjing Pege’s “PG” brand Gravimetric Loss-in-weight feeder

Nanjing Pege’s “PEIKE” brand Gravimetric Loss-in-weight feeder

 

Introduction

Nanjing Pege Techno Machine Co., Ltd is specialized in designing and producing the low in weight feeders including single and twin screws loss in weight feeder, liquid gravimetric feeder, micro scale feeder, vibratory feeder, Paddle massaged flexible PUR hopper feeder and multi-ingredients compounding feeder.

Our products are successfully applied in various dosing and blending(mixing) field, like chemistry, engineering plastics, cable, food processing, pharmaceutical and building material industries.

Our head company is constantly dedicated to providing the solutions of weighing, feeding, transmission, packing and automatic stacking, to provide the professional products and service for the customer worldwide both in solid and liquid product manufacturing field. To strengthen our competence and leading position in the gravimetric weighing field, we integrated our profound technology and talents to better improve our design and manufacturing competence.

 

PRODUCTS

Twin screw loss-in-weight feeder 

Application material

Resin Granules, Resin Powder, Calcium carbonate, French Chalk, Tio2, Carbon Black

 

Features

1. Cantilever type weighing frame ensure lower gravity(barycenter) center, weaker vibration and anti-interference performance of the whole feeder.

2. Vertical U-shaped hopper with mirror-like inner wall and without corner enclosure can ensure no bridge of the materials

3. Stainless Steel bellow sensor has the feature of only slight deformation after long time use, and high precision with less signal drift, and is durable for bad environment use

4. 485 Digital transmission of weighing data has the feature of no attenuation and anti-interference during the period of data transmission.

5. Feeding and stirring is operated separately, using independent agitation motor and stirring speed can be adjusted according to the demand.

6. No agitation motor on the top of the hopper will surely reduce the vibration during the operation, then this design will achieve high stability and high accuracy.

Vibrating Tray Loss-in-weight Feeder

 

Application material

Flack, Glass Fiber, Cylindrical Material, Irregular Shape Material from Recovery

 

Features

1. Cantilever type weighing frame ensure lower gravity(barycenter) center, weaker vibration and anti-interference performance of the whole feeder.

2. Double weighing sensors weight platform ensure good balance degree and no unbalanced loading

3. 485 Digital transmission of weighing data has the feature of no attenuation and anti-interference during the period of data transmission

4. Vibration type feeding has no damage on the material itself.

5. Electrical magnetic vibration type feeding ensures tiny machine wear and tear and nearly none of maintenance parts are needed

 

Applications Material

Liquid Additive DCP Silane Maleic Anhydride

 

Features

1.       Cantilever type weighing frame ensure lower gravity(barycenter) center, weaker

vibration and anti-interference performance of the whole feeder.

2.       Stainless Steel bellow sensor has the feature of only slight deformation after long time use, and high precision with less signal drift, and is durable for bad environment use.

3.       485 Digital transmission of weighing data has the feature of no attenuation and anti- interference during the period of data transmission.

4.      Hydraulic Diaphragm Pump, Plunger Pump, Gear Pump are selectable.

5.       Equipped with complete isolated SUS304 bellow spring damping type spray gun, has the feature of keeping pressure stable within 48 hours.

6.      Explosion proof, heat preservation by water or electricity are selectable

 

Flexible Paddle-Massaged PUR Hopper Feeder

 

Application material

Resin Particles, Resin powder, Calcium Carbonate,

Talcum powder, Titanium White Powder

Carbon Black, Flame Retardant Antioxidant

 

Features

Suitable for all-purpose bulk material, especially for the powder material with humidity and low flowability.

The cantilever sling-type weighing scale supports the storage hopper, which has the characteristics of vibration reduction and anti-level interference. This design can effectively shield the non-weight value interference from the vibrator and measure the flow of the system more accurately.

No bridging thanks to straight walled hopper.

Gentle feed capability by paddling flexible hopper with external agitation.

Easy to disassemble and to clean, convenient for maintenance.

No direct touch between stirring unit and material ensures no damage on the materials.

Improve material flowability, optimize dynamic loadings of the screws, to ensure stable and accurate flow rate.

Arch breaker inside of the machine can ensure efficient weighing feeding even the humidity rate in the materials reaches to 20%

 

CONTROL SYSTEM FEATURES

 

1.  Self-learning: The equipment can automatically identify the bulk density and fluidity of the material during the pre-operation, self-tuning during operation and continuously optimizing the best P (proportion) and I (integral) values to ensure rapid response of the system operation

2. Anti-interference: Automatically identify the intensity and duration of the interference and adopt emergency backup procedures to deal with it urgently to ensure the stability and accuracy of the system.

3.       The software is independently developed. After the product leaves the factory, the original program will be burned on the Micro SD card and given to customers randomly. Hardware adjustment.

4.      The mainstream communication formats in the market can be customized according to customer needs, such as Modbus, PPI, MPI, Profibus, Ethernet and other communication formats, so that customers can access the factory's main control system.

5.       The weighing signal transmitter is a customized product with a resolution of one hundred thousandth. The transmitter is installed on the weighing frame and is about one meter away from the weighing sensor. The signal transmission uses RS485 twisted shielded wire and digital transmission. Eliminate signal attenuation and interference

6.      The controller uses Siemens SMART series PLC, each scale uses a CPU, and each scale (each CPU) is connected in parallel by Ethernet.

7.       The RS485 serial port of the Siemens controller communicates with the weighing transmitter, installs an RS485 serial port to communicate with the inverter or servo controller, and the built-in Ethernet port communicates with the touch screen or host computer through the switch. Digital communication throughout the network, high speed, efficiency and stability

8.      The system can display and record operating parameters and can be installed with industrial control computer systems such as domestic Kingview, Siemens Wincc. At the same time, a scanning gun can be installed for barcode parameter reading, process flow recording, and quality traceability.

 

FAQs on Peike loss-in-weight feeders

1.     What kinds of materials can be used for loss in weight feeding?

Resin granules, flack, flocculus, powder and pellets blendings

Resin Particles, Resin Powder, Calcium Carbonate, Glass fibers

Talcum Powder, Titanium White Powder Carbon Black, Flame Retardant Antioxidant

Flack, Glass Fiber, Cylindrical Material, Irregular Shape Material from Recovery

Liquid Additive, DCP Silane, Maleic Anhydride

 

2.    What kinds of feeders are included in the loss in weight feeder series?

Our feeding product range includes micro loss in weight feeder, single screw feeder, twin screw feeder, vibratory tray feeder, Paddle massaged Polyurethane Hoppe feeder and liquid loss in weight feeder.

PPS PET and PA parts Cryogenic deburring/ Deflashing Machine

 

PPS PET and PA parts nitrogen deburring machine

 

Cryogenic deflashing and deburring system is a process that employs cryogenic temperatures to remove flash on manufactured workpieces made of a wide range of plastics (and other materials) both thermoset and thermoplastic. Some examples of materials used include nylon, HD-PE, PPS, PET, polycarbonate, polypropylene, polyurethane, liquid crystal polymer, PA+GF, PC+GF, PEEK, and Acetal. Manufactured parts that have been successfully deburred include those made through injection molding, compression molding and extrusion molding.

 


 What is “Flash.”

“Flash” is a raised edge attached to the workpiece. It is an unwanted piece of material and requires removal. Many medical devices and other precision components are included in deflashing applications. Deburring accounts for a significant amount of the costs of manufacturing. The cryogenic deflashing process causes the flash or burr to become stiff or brittle and break away leaving a clean edge. There are three types of burrs that can be formed in manufacturing operations and can be classified by the physical manner of formation: Poisson burr, roll-over burr and Tear burr.

Poisson Burr

A Poisson burr results from the tendency of a material to bulge at the side when compressed until permanent deformation of the plastic occurs.

Roll-over Burr

A roll-over burr is a burr that is more of a chip that is bent rather that sheared. The resulting burr is usually comparatively larger. The process even removes recessed burrs in blind and through holes.

Tear Burr

A Tear burr is the result of material tearing from a work piece rather than shearing from it.


In the cryogenic deflashing process, parts are loaded into a basket. A cryogem such as liquid nitrogen is used to cool the workpieces. After they are cooled they are tumbled with pellets- often a polycarbonate media ranging in size from 0.006 to 0.080 inches (0.15mm to 2.03 mm.) Sometimes cryogenic deflashing does not rely on a blasting action but rather on the tumbling of the parts to remove flash from the outer edges. The process can even remove recessed burrs in blind and through holes. The process does not affect the surface finish or the geometry of the part. Edges are maintained without rounding or removal of extra material and only the unwanted burrs are removed.

 

Cryogenic Deflashing Systems Advantages

Cryogenic deflashing equipements provides advantages over manual deflashing.

The process maintains part integrity and critical tolerances. As it is a bath process the price per piece is far less as many more parts can be processed at the same time.

Cryogenic deflashing is non-abrasive.

As the process is computer controlled, the human operator variable is removed from the process.

Mold life is extended by the cryogenic deflashing process. Instead of making a new mold a company may choose to deburr a manufactured part cryogenically and achieve the same product quality very much as they would with a new mold for a period of time until maintenance is performed.

 

Pege’s Automatic Nitrogen Trimming Machine’s Features

Greater productivity

Large output in short time

Better and consistent Finish

Low Labour dependence

Space Saving

Low Media Consumption

Wide variety of rubber compounds - NR to Silicon Rubber

Low Nitrogen Usage

Simple Electrical Controls

High Efficiency Blast Wheel

Safety Interlocks

Simple and Very Low maintenance

 

 

 

PU TPU TPE parts cryogenic deburring machine

PU TPU TPE parts cryogenic deburring machine

 

Cryogenic Deflashing or cryogenic deburring is available for all molded parts, including those made of plastics, polymers, nylons, rubbers, silicone rubber, polyurethane, neoprene, liquid crystal polymer, urethane, viton, polycarbonate, PTFE, PPS, delrin, polypropylene, EPDM, nitrile, butyl, DAP, ABS, PEEK, Acetal and aluminum zinc die cast and precision elastomer parts.

 

Cryogenic Deflashing Works On Most Molded Parts

 

The computer-controlled process generates repeatable and reliable results. Many medical devices and other high value precision molded components are included in our vast array of successful deflashing applications. We have processed parts manufactured through injection molding, compression molding and extrusion molding.

Our cryogenic deflashing machine offers a fast and repeatable process to remove flash from plastic parts. Through freezing, tumbling and blasting polycarbonate media at your injection molded plastic parts, we are able to remove residual mold flash time and time again.

The Cryogenic Deflashing process was originally created to remove mold flash from rubber parts. We are able to deflash rubber parts that are injection molded, extrusion molded and compression molded. We have processed parts made of various durometers. We typically deflash rubber parts made of EPDM, neoprene, Viton, Buna-N, nitrile, natural gum, SBR, butyl, and other elastomers.

Our Cryogenic Deflashing machine is often used by molders who work with silicone rubber. Silicone rubber, by its nature, is very viscous causing it to flash during the molding process. The Pege’s Deflashing machine removes mold flash from silicone rubber parts. We deflash parts made of liquid silicone rubber and even special blends of silicone rubber that include conductive fillers such as silver, graphite, nickel.


Rather than invest in an expensive new or repaired mold tool, customers can elect to extend the functional life of their mold tool by adding the additional step of deflashing, to finish the part and remove any residual flash leftover after molding operations. It is economical to pay only a slight premium per part than to invest in a new molding tool that has a limited production life.

 

Cryogenic Deflashing is a fast and efficient process that provides complete removal of mold flash without affecting the surface finish. Therefore, it is a safe,clean and cost-effective alternative to traditional methods.

Parts are placed in a chamber, cooled, tumbled and impacted with plastic polycarbonate media. Mold flash is removed quickly and cleanly. No dust or residue remains after deflashing.

Cryogenic Deflashing is more cost-effective than labor-intensive hand deflashing by a significant margin. The cost to process parts can range from less than .01 cent to several dollars apiece. General rule of thumb: cost is between 10% and 20% of the value of the part, although each part must be considered on its individual

 

Nanjing Pegedeflashing’s Cryogenic Deburring Machine’s ADVANTAGES

Greater productivity

Large output in short time

Better and consistent Finish

Low Labour dependence

Space Saving

Low Media Consumption

Wide variety of rubber compounds - NR to Silicon Rubber

Low Nitrogen Usage

Simple Electrical Controls

High Efficiency Blast Wheel

Safety Interlocks

Simple and Very Low maintenance

 

Our factory and Workshop of cryogenic deflashing systems

Nanjing Pege Techno Machine Co.,Ltd production plant is located in the No.9 Ankang road, Guli Industrial Zone, Jiangning District, Nanjing.
We have professional production workers and process, are determine to produce best product for the customer all over the world

 

Packing and Transportation of cryogeic deflashing equipments

The machine produced by Nanjing Pege is well packed by plywood carton suitable for long distance sea transportation to ensure machine safety and performance.

We can help customer to arrange the transportation by the terms of FOB, CIF with land or sea transportation methods according to the request from the 

The main components of an aluminum foil airline food container making machine

An aluminum foil container making machine is a specialized machine used for the production of aluminum foil food containers specifically designed for use in airlines and other similar food service industries. The aluminum foil plate/ tray making machine is capable of producing a high volume of uniform and standardized food containers in a fast and efficient manner.

The main components of an aluminum foil airline food container making machine typically include:

  1. Feeding System: This system is responsible for feeding the aluminum foil material into the machine for further processing. It may consist of a roll of aluminum foil and a tension control system to ensure smooth and continuous feeding.

  2. Material Cutting System: The machine is equipped with a cutting system to accurately cut the aluminum foil into the desired shape and size for the food containers. Various cutting mechanisms such as rotary cutting or stamping may be used depending on the specific design of the machine.

  3. Molding System: This system shapes and molds the cut aluminum foil into the final form of the food container. It may utilize a combination of mechanical presses and molds to create the necessary folds and shapes required for the container.

  4. Punching System: A punching system is employed to create perforations or ventilation holes in the formed aluminum foil containers, allowing steam and heat to circulate during the food heating process.

  5. Stacking and Collection System: The machine typically includes a stacking and collection system to neatly stack and collect the finished aluminum foil containers, ready for packaging and transportation.

  6. Control System: The aluminum foil plate/ tray making machine is controlled by an automated control system that enables operators to set parameters such as container size, cutting length, perforation patterns, and production speed. It ensures proper synchronization and coordination of the various machine components for efficient operation.

The main features of an aluminum foil airline food container making machine include high production efficiency, precise cutting and shaping capabilities, adjustable container sizes, automatic operation with minimal manual intervention, and reliable performance. These machines are designed to meet the specific requirements of the airline food service industry, producing containers that are lightweight, durable, and suitable for sealing and reheating food during flight operations.

The Main Compositions of A Cryogenic Deflashing System

The Main Compositions of A Cryogenic Deflashing System

A cryogenic deflashing machine, also known as a cryogenic deflashing system, is used for removing unwanted burrs, flash, or excess material from molded or machined components. The composition of a cryogenic deflashing system generally includes the following components:

1. Deflashing Chamber: This is the main working chamber where the components to be deflashed are placed. It is usually a sealed, insulated enclosure designed to withstand low temperatures.

2. Liquid Nitrogen (LN2) Supply(nitrogen deflashing machine): Cryogenic deflashing relies on liquid nitrogen as the cryogenic medium. The LN2 supply provides the necessary cooling agent required for the process.

3. LN2 Delivery System: This system is responsible for delivering liquid nitrogen to the deflashing chamber. It typically consists of supply lines, valves, and control mechanisms to regulate the flow of LN2.

4. Control Panel: The control panel houses the electrical and electronic components that control and monitor the cryogenic deflashing process. It includes temperature controllers, timers, pressure gauges, and safety features.

5. Media Circulation Mechanism: Some cryogenic deflashing machines incorporate an auto media circulation system to realize the media blasting function and then enhance the deflashing process. This can be in the form of tumbling barrels, rotating baskets, or oscillating fixtures.

6. Exhaust System: As cryogenic  deflashing process generates gases and vapors, an exhaust system is employed to remove these by-products from the deflashing chamber. It helps maintain a safe working environment and prevents the accumulation of hazardous substances.

7. Filtration System: To remove any debris or particulate matter generated during the deflashing process, a filtration system may be included. It helps ensure the cleanliness of the liquid nitrogen and prolong the equipment's lifespan.

8. Safety Features: Cryogenic deburring machines often have safety features such as emergency stop buttons, alarms, and interlocks to ensure operator safety during operation.

 

It's important to note that specific configurations and features of cryogenic deflashing systems may vary depending on the manufacturer and the intended application. Get more details from www.pegedeflashing.com