What are the advantages and disadvantages of agricultural drones

Drones, once only used in the military field, are now redefining precision agriculture. Nowadays, the number of farmers using drones on their own farms is steadily increasing. Various drones provide them with low-cost aerial camera platforms. In this way, farmers can monitor crops in an economically effective way. In use, drones are used to capture crop images, which are later processed by specialized software to obtain reflectance images of farm crops.

Drones spraying pesticides

Currently, there are more and more extreme weather conditions. Accompanying the growth of the world population is a huge increase in the consumption of agricultural products. Considering these circumstances, more and more farmers are expected to use drone technology. The use of drones in the agricultural sector has brought many benefits. But like any other technology, drones also have their advantages and disadvantages, which intentional buyers should be aware of before making a purchase.

Advantages of agricultural drones

1. Agricultural analysis

Drones can be used for soil and farmland analysis. With the help of drones, accurate 3D maps can be generated for analysis of soil properties, soil moisture content, and soil erosion, which are crucial for precision seeding in planting modes. Even after planting, the above information on farmland irrigation and nitrogen level management is very helpful.

2. Planting

At present, although drone planting is not yet common, some manufacturers have proposed system solutions that hope to shoot pods containing seeds and plant nutrients into prepared farmland soil, which will greatly reduce planting costs.

3 Monitoring

One of the biggest obstacles in agricultural production is the inability to efficiently monitor crops in large areas of farmland. The emergence of unpredictable weather patterns leads to increased risks and maintenance costs, making this obstacle even worse. Drones can be used to create time series animations that display accurate crop growth conditions, allowing for better management of crops by showcasing their precise growth processes.

4. Agricultural spraying

By using ultrasonic echoes and lasers, drones can adjust their flight altitude according to changes in terrain and geography. The ability of drones to scan and adjust their distance from the ground enables them to spray the correct amount of medication in real-time and evenly. This improves efficiency and minimizes the amount of groundwater infiltration. The use of drones for spraying has been proven to be faster than other traditional methods.

5. Irrigation

Drones equipped with thermal and hyperspectral sensors can identify parts of the field that have become dry, which can help people irrigate accurately and timely at specific locations.

6. Health assessment

Some drones can scan crops through visible light and near-infrared light, and the light processing equipment they carry can recognize the amount of green light and near-infrared light reflected by plants. These data are then used to develop multispectral images that describe the health status of plants. These images can be used to track the health status of crops and provide recommendations for remedial measures upon detecting any diseases.

7. Easy to deploy

Unlike traditional aircraft, drones are easier to deploy and have lower costs.

Disadvantages of agricultural drones

1. Flight time and range

There are also some issues with agricultural drones, with most drones having a short flight time, typically between 20 minutes and 1 hour. This flight time limits the area that each flight battery can cover. And the flight range also limits the radius within which a single drone can fly. Drones with longer flight times and larger flight radii are expensive.

2. Initial purchase cost

Drones that can be used in the agricultural field are quite expensive. The current cost of fixed wing drones is as high as $25000. There are also some drones whose high prices include hardware, software, tools, and imaging sensors.

Purchasing drones without relevant equipment is cheap, but the high cost of cameras and processing software that meet the requirements makes the difference between the two not significant. However, the cost of purchasing a complete set of agricultural drone equipment in the short term is high, but it is worth it in the long run.

3. Federal laws

According to federal law in the United States, drones used for agricultural purposes are considered commercial, which means farmers need to receive FAA operator training and obtain remote driving certificates or hire operators with such qualifications. The FAA also requires drones to fly at an altitude not exceeding 400 feet.

Interference within the airspace of 4

Agricultural drones and manned aircraft share the same airspace, making them susceptible to interference with each other. Therefore, it is recommended to submit a flight plan to the local airport or FAA before using the drone.

5. Highly affected by weather conditions

Unlike traditional aircraft, drones are more susceptible to the influence of climate conditions. If it is windy or rainy outdoors, the drone will not be able to fly.

6. Knowledge and skills

The images obtained by drones require professionals to convert them into useful information, which means that ordinary farmers may need to attend training or have to hire professional analysis software personnel to assist with image processing.

Drone technology is constantly improving every day, and as more and more manufacturers enter the industry, the cost of drones and related equipment will decrease. It is expected that limitations such as flight time and range will be addressed through technological improvements. This will enable farmers to gain more benefits from the use of drones.

Advantages and disadvantages of drone spraying

Drone spraying is a new type of operation method in technological development. High work efficiency, suitable for large-scale agricultural pest control. This is tens or hundreds of times more than physical labor. It can complete tasks that are easy to manually complete, such as forest and mountain forest operations. So how effective are unmanned aerial vehicles used for medicinal purposes on rural land?

Things often have two sides, namely advantages and disadvantages. Drone spraying is no exception, each with its own advantages and disadvantages. The advantage is that the spraying speed is fast. The crop protection drones used for agricultural spraying are generally multi rotor aircraft, much larger than typical small aerial photography drones, with longer endurance and much faster speed. Not to mention, compared to manual spraying, the spraying efficiency of aircraft is hundreds of times higher.

In addition, crop protection drones can adopt two control methods: manual remote control and satellite guided control. Usually, large plots use satellite navigation to control spraying. For land parcels, seamless spraying can be achieved without losing crops. No matter how slow and careful manual spraying is, there will always be omissions at the beginning, which machines cannot match

The spraying quality is also very high. The principle of drone spraying is to install the medicine box on the body of the drone, open the valve after the drone takes off to discharge the medicine, and then use the strong wind generated by the high-speed rotation of the drone blades to atomize and blow down the medicine. Due to the strong atomization and falling of drugs by the wind, the adhesion and diffusion rate of drugs is higher than traditional manual spraying, so the effect of spraying drugs in this way is higher than manual spraying.

In fact, there are many potential safety hazards hidden in drones, and some issues have also been documented in previous reports. For example, during the process of spraying pesticides, if no pesticides are sprayed into the river, all organisms in the river will be poisoned. A clear river on the horizon is easily destroyed. If there are artificially cultivated aquatic products in the Tianbian River, it is easy to become an economic dispute if such a problem is encountered.

In addition, the promotion of drone pesticide spraying in modern rural areas is insufficient, and there are many regulatory loopholes. Relevant departments need to introduce policies to guide and manage it correctly, avoid irreparable losses caused by technical errors, and ensure the safety of drone pesticide spraying.

Therefore, if rural areas want to implement drone pesticide spraying, corresponding technical support must be provided first, and drone training must be provided to farmers to ensure that they use drones in the correct situations, thereby avoiding many problems. As long as they have sufficient technology, they must maintain consistency in the spraying process.

In addition, due to its fast speed, the effect of uniform application is poor. The drone spray passes through instantly, making it difficult to mix evenly and thoroughly. The only way to overcome the problem of uneven and thorough beating is to increase the concentration of the liquid medicine, thereby increasing the investment cost. For example, when spraying drugs in cotton fields, UAV spray can not kill cotton bollworm in cotton buds, aphids on the back and bottom of leaves.

Only by absorbing crops can endogenous pests be dealt with, and some pests may not be killed by endogenous agents but can only be dealt with through contact. The main disadvantage of manual spraying is slow speed, making it difficult to spray at high altitudes. It has the advantage of uniform application, which can evenly and thoroughly hit crops up and down. Save technical solutions.

Although there are many advantages to using drones to spray pesticides, such as high efficiency and good quality, there are also certain limitations. For example, it depends on weather conditions. It cannot take off in bad weather and cannot work all day. It is only suitable for the vast northern regions, while the southern mountainous and hilly areas are not particularly suitable for large-scale operations.

Generally speaking, using drones to spray pesticides on farmland is very cost-effective. Short time, uniform spraying, and affordable price. Therefore, more and more farmers are gradually choosing to use drones to spray pesticides on crops. There are also many smart young people who see the vast prospects of this industry, specializing in drone spraying, and the profits are still considerable.

Drones are a manifestation of high-tech technology applied in agriculture, and are a progressive product of the combination of modern technology and traditional agriculture. From an efficiency perspective, it is indeed higher than manual spraying. From a practical perspective, it cannot be compared to manual operation. Drones can only spray on the front of crops, but cannot spray on the back of crops.

When spraying pesticides, unmanned aerial vehicles also pay attention to the weather. Due to strong winds and heavy fog, it is impossible to operate, and manual operation can completely ignore this situation. Therefore, unmanned operation has its own advantages, and manual operation also has its advantages, which should be complementary. We cannot veto drones with one vote. We should view new things from a developmental perspective. Although there are drawbacks to drone operation, it is an assistant for the future development of agriculture.

How to control drones

With the rapid development of technology, drones, as a new type of intelligent aircraft, have been widely used in various fields such as aerial photography, agriculture, logistics, and rescue. So, how do drones achieve precise control? This article will provide a detailed answer to this question regarding the control principles, control systems, control methods, and future development trends of unmanned aerial vehicles.

1. Control principle of unmanned aerial vehicles

The control principle of unmanned aerial vehicles is mainly based on aviation mechanics, electronic technology, and control theory. Its core lies in real-time monitoring and adjustment of the attitude, speed, altitude and other parameters of the drone through its internal flight control system, in order to achieve stable flight and precise control.

The drone flight control system usually consists of three parts: sensors, controllers, and actuators. Sensors are responsible for collecting information such as the attitude, speed, and altitude of drones. The controller calculates control instructions based on this information and then drives the drone to perform corresponding actions through actuators such as motors and servos.

2. Control system of unmanned aerial vehicle

The control system of unmanned aerial vehicles is the key to achieving precise control. Generally speaking, the control system of a drone includes two parts: ground control system and onboard control system.

The ground control system mainly consists of remote controllers, ground stations, and other equipment. The remote control communicates with the drone through wireless signals, and the operator can issue control commands through the remote control to control the drone's takeoff, landing, flight trajectory, etc. The ground station is responsible for higher-level task planning, data processing, and real-time monitoring functions.

The onboard control system mainly includes flight control board, sensors, actuators, etc. The flight control board is the "brain" of the drone, responsible for processing information from sensors and calculating control commands. Sensors are responsible for collecting various status information of drones, such as attitude, speed, altitude, etc. The executing mechanism drives the various components of the drone to perform corresponding actions according to the instructions of the flight control board.

3. Control method of unmanned aerial vehicle

There are various control methods for drones, including manual control, automatic control, and hybrid control.

Manual control is the most direct control method, where operators issue commands through a remote control to control the flight of the drone. This method requires operators to have certain flying skills and experience, but can achieve high flexibility and real-time performance.

Automatic control is the use of pre-set programs or algorithms to enable drones to autonomously complete flight tasks. This method does not require manual intervention and can greatly improve the stability and efficiency of flight. For example, in the field of aerial photography, drones can automatically capture images through pre-set routes, greatly reducing the burden on operators.

Hybrid control is a combination of manual control and automatic control, which retains the flexibility of manual control while leveraging the stability advantage of automatic control. In practical applications, operators can flexibly choose control methods based on task requirements and environmental changes.

4. The development trend of drone control technology

With the continuous development of technologies such as artificial intelligence and big data, drone control technology is also constantly advancing. In the future, drone control technology will present the following development trends:

  • Intelligence: By introducing artificial intelligence algorithms, unmanned aerial vehicles can achieve autonomous decision-making and intelligent obstacle avoidance functions, improving flight safety and efficiency.
  • Clustering: Through drone clustering technology, multiple drones can collaborate to improve task execution efficiency and reduce costs.
  • Cloudization: With the help of cloud computing and big data technology, real-time transmission and processing of drone data can be achieved, providing strong support for decision-making.
  • Standardization: With the continuous expansion of the drone market, the standardization and normalization of drone control technology will become an inevitable trend, which will help promote the healthy development of the drone industry.

In summary, the control of Agricultural drones involves multiple fields such as aviation mechanics, electronic technology, and control theory, achieving precise control through flight control systems, control systems, and various control methods. With the advancement of technology, drone control technology will continue to develop towards intelligence, clustering, cloud computing, and standardization, providing more efficient, secure, and convenient support for applications in various fields. In the future, drones will play an important role in more fields, bringing more convenience and possibilities to human production and life.