CNC Machined Parts Precision, Applications, and Benefits

Introduction

CNC machined parts are the primary elements of the contemporary production process, being precise and highly versatile for their use across industries. CNC (Computer Numerical Control) machining is a technology-driven technique that has evolved to automatically perform the cutting, shaping, and finishing of materials with precision. These machined parts are crucial in the development of parts features required in the design and implementation the detailed features with geometrical complexities. In the aerospace, automotive, medical devices, and consumer electronics industries, CNC machined parts have high advantages in quality, efficiency, and cost. In this article, we will discuss what exactly CNC machined parts are, the uses of such parts, and why CNC machined parts are so important in manufacturing today.

What are CNC Machined Parts?

CNC machined parts are the parts made out of CNC machining which is an entirely automated process of using computer-operated tools to cut various materials into required shapes and sizes of the final products. These parts can be manufactured from a broad spectrum of materials such as metals, plastics, and composites that give those components application in aerospace, automotive, medical, and electronics industries. With CNC machining, it is possible to produce simple spare parts and at the same time complicated machineries for prototype as well as mass production. Hence, CNC machining is widely used where there is a need to achieve high accuracy, small or large repeatability, and fine surface finish.

 

How CNC Machining Works?

CNC machining work begins with a 3D model that is most often developed using CAD (Computer-Aided Design) tools. The aforementioned design is then translated into G-code or essentially machine-interpretable code as done by CAM (Computer-Aided Manufacturing) software The numerical control in the CNC machine interprets the G-code and lends itself to the desired position of the cutting tool or workpiece in the form of coordinates and cutting path. It also depends on the type of the CNC machine where some of the most typical operations are milling, turning, drilling, and grinding. The workpiece is clamped, and tools are used to gradually cut away material to give the machine the ability to produce fine form, surface profiles, and textures. CNC machines are highly automated, which causes a minimal chance of defects on a produced part.

 

Main Benefits of CNC Machined Parts

● High Precision and Accuracy: CNC machining is widely famous due to its capability to consistently manufacture parts with small tolerances ranging from a few micrometers. This level of accuracy guarantees that mating surfaces fit accurately and this is effective, especially in multilayer designs.

● Repeatability: CNC machines are highly programmed allowing them to create similar parts with equal quality thus suitable for applications that require many similar parts and high usage. The machines are flexible enough to perform with high efficiency and have almost no variation between the parts.

● Complex Geometries: CNC machining can cut kerf patterns that are otherwise incompatible with craftsmanship by regular cutting techniques. Some examples of the specialization of the machines include – multi-axis machines, which are used in cutting planes in a way that can create complex geometries in the shaped parts.

● Material Versatility: It can machine all types of metals and even plastics, composites, ceramics, and other related materials such as aluminum, steel, and titanium. Due to this flexibility, it can be used across many industries and in many different ways.

● Reduced Lead Time and Increased Efficiency: CNC machines do not require any break and thus greatly improve the lead time. Automation of the process means that only a little human interference is required and that there is a great improvement in the speed of production to ensure that turnaround time is minimal yet the quality of work produced is not compromised.

● Customization: CNC machining enables the manufacturing of very complex or one-off parts to meet certain customer requirements or certain products. Wherever a unique piece or a few production pieces are required, CNC machines are useful in their flexibility to manufacture.

● Cost-Effectiveness for Complex Parts: Even though setting up CNC machining may require a lot of money, it is cheaper to use because of the precision and accuracy apart from having less wastage and llaborharges and shorter working time for the complicated parts.

 

Common Types of CNC Machined Parts and Their Manufacturing Processes

Milling Parts

CNC milling is a process of using cutter tools to cut away a material to form flat t surfaces, grooves, holes, and different shapes on a workpiece. Milling parts can be cut without much distortion on 3, 4, or 5-axis CNC milling machines. It is especially applicable for manufacturing parts with high geometric density, under or oversize, and variant shapes.

Examples of Milling Parts:

● Brackets and Mounts: Foundries used in automotive, aerospace, and industrial applications for tying or supporting other parts.

● Gear Housings: CNC milling works on these components to get accurate dimensions and smoothness for the r correct positioning of the gears.

● Custom Enclosures: Computer numerical control milled parts are common in the manufacturing of customized casings for electronics and mechanics.

● Turbine Blades: It is usually applied in applications such as aerospace and power generation where the issue of aerodynamics is incredibly sensitive.

Turning Parts

Turning is a method of material removal, in which a workpiece is rotated against a cutting tool; it is mostly used for cylindrical workpieces. The cutting tool traverses along the axes in order the produce accurately rounded free-form surfaces and form features such as slots, threads, or tapers. CNC turning is best applied in high production runs and drilling or turning of parts with circular geometries.

Examples of Turning Parts:

● Shafts: Applied in motors, pumps, and other mechanical assemblies where cylindrical form with accuracy is required.

● Bushings: These are normally cylindrical products that are inserted into other parts to decrease rubbing.

● Pins and Bolts: These parts are widely used in automobile, machinery, and construction industries where there is a high demand for accurate thread and dimensions.

● Collets: Tools that clamp pieces together with high accuracy are often used in a production line and among robots.

Drilled and Tapped Parts

CNC drilling and tapping are conventional turning operations that involve making holes and internal threads in the components. Drilling results in the machining of holes and tapping involves the cutting of internal threads within those holes. This orientation together with the other allows easy assembly using fasteners.

Examples of Drilled and Tapped Parts:

● Flanges: Sometimes used in piping systems, flanges have bolt holes in them that have to be drilled to receive bolts.

● Electrical Connectors: These parts require drilled and tapped holes to provide firm connection points for electrical parts.

● Brackets and Fixtures: CNC machining makes holes that screw in brackets applied in diversified industries.

● Motor Housings: These usually call for drilled and tapped holes whereby various motors and other parts are fixed in place.

● More specifically, we identify three types of geometries that are complex, namely: complex geometries and custom parts.

One of the most important benefits of CNC machining is the ability to fabricate more complex shapes and designs for parts. It is possible to incorporate several features, contours, and details that are almost impossible to effect through conventional techniques. Prototypes are crafted as per the requirements in a single run or the minimum possible number of runs.

 

Examples of Complex Geometries and Custom Parts:

● Aerospace Components: Other structures such as engine mounts, wing ribs, and fuselage frames call for complex shapes that should exhibit tight dimensional control.

● Medical Devices: Implants, surgical instruments, and prosthetics are other products that have specific requirements that should be met by precision machining.

● Precision Gears and Rotors: These components require intricate cutting, shaping, and contour to allow free movement in mechanical applications.

● Custom Connectors: Electrical and mechanical systems can have assigned connector shapes, sizes,s, and material properties which can be created by CNC machining.

Materials Used for CNC Machined Parts

Metals

Aluminum is easy to machine, corrosion-free, and indeed a light metal that finds its use in almost all fields and industries from aerospace to electronics.

Stainless steel and carbon steel are relatively stronger, tougher, and better in wear-resistant properties. Steel parts are common in automotive, industrial, and heavy machinery where durability is very important.

Titanium is recognized for its capacity to withstand low weight as well as the capability of withstanding corrosion and heat. The product is employed frequently in aerospace or medical device manufacturing since performance and durability are required in severe environments.

Plastics and Composites

Due to their lighter weight and flexibility together with their nonsusceptibility to corrosion and chemical agents, plastics and composites are often selected for CNC machining.

Nylon, ABS, and Polycarbonate have good mechanical performance for applications where metallic parts are not desirable, for instance, housings, panels, and insulation.

Fiberglass and carbon fiber-reinforced plastics are used where the strength-to-weight ratio is an important requirement. Casting of composites enables the formation of mechanically robust and lightweight components for automotive body panels and drone structures.

High-value additive, Aerospace Metals and Alloys, Medical and Chemical Grade Parts.

Speciality Materials

Inconel and aluminum lithium alloys are used for parts that are in high-stress applications such as turbine blades and other engine components. These material offers good strength at elevated temperatures and are also immune to corrosion.

Medical grade materials include materials such as biomaterial titanium and plastics which are medical graded. These materials are applied in the fabrication of surgical instruments, implantation products, and medical appliances that are required to conform to health standard requirements.

 

Uses of CNC Machined Part

Aerospace Industry

The aerospace industry uses CNC machined parts for those parts that are required to function in conditions of high-speed flight, pressure variations, and temperature variations. Fig. 70 Precision and reliability are achieved by using the process of CNC machining to create parts such as turbine blades, structural support,s and engine parts. Lightweight compounds like titanium and some special types of alloys are used to attain the best performance and solidity for aircraft and spaceships.

Automotive Industry

Automotive parts need to be produced with tight tolerances and are best created using CNC machining. When high strength and high precision are required such as in the case of engine blocks, transmission parts, brake systems,s and suspension parts of vehicles, then CNC machining is used. The process helps to guarantee that parts are produced to the required standards of performance, safety, and economy for both production automobiles and specialty vehicles.

Medical Device Manufacturing

The medical industry particularly has benefited from CNC machining by using it to make complex and accurate parts such as surgical tools, implants, and diagnostic equipment. Several materials such as titanium and medical-grade plastics are often used to produce components that require biocompatibility, safety, and accuracy. Since the parts that are produced can be tailored to meet the needs of certain procedures, there are higher chances of success and better patient results.

Electronics and consumer goods

Semiconductor and related electronic equipment manufacturing industries form the largest market for CNC machining services. Products such as phone housings, connectors, and circuit boards entail precision and quality and these are well done by CNC machines. Also, the machining of its parts for smart devices, computers, and household appliances guarantees that these products perform properly and provide the necessary quality to the customers.

 

Advantages of CNC Machined Parts

High Precision and Tolerance

It is the efficiency in creating parts that have very small clearances and significant accuracy, for which CNC machining is celebrated. This means that every part and sub-assembly in a structure or an assembly meets the required fit or functional requirement. Stereolithography is very good at creating detailed but relatively small components, while injection molding can produce larger, more accurately dimensioned parts, but cannot match the accuracy of CNC machining.

Efficiency in Production

Since CNC machines can run for many hours with less or no supervision, there will be increased production. It also means that outputs are faster and more efficient since human error and deadlines are avoided by the use of automated processes. Also, these machines are applicable both in small-scale production, for example, prototyping, and large-scale production.

Customization and Flexibility

Another advantage of CNC machining that has to be taken into account is versatility. It can work and create parts as per specific client requirements and hence provide solutions that meet diverse needs. CNC machines apply to a myriad of materials, and can easily accommodate changes in part design. This flexibility positions CNC machining well where there are niche or small-run production needs as seen in aerospace, medical device, and electronics manufacturing.

Less waste and cost savings.

CNC machining is a subtractive manufacturing process, this means that material is only removed where required. This helps to reduce waste since Plexiglas can be cut to size which is better than most manufacturing processes such as casting that usually produce scrap. Further, by using CNC machines, a large number of parts do not require rejections and consequent re-manufacturing, which is time-consuming and increases the cost of production. We also see that the employment of mechanical methods and faster production rates reduce the cost of production as well.

 

Conclusion

CNC machined parts are one of the most widely used parts throughout today’s manufacturing industries, providing high levels of accuracy, speed, and flexibility. In the aerospace sector, as well as in the medical industry, the level of detail, especially the level of detail in terms of geometry and tolerances, makes it possible to fulfill the requirements of present-day industries when utilizing CNC machining. Certainly, the widespread application of CNC technology in the production process brought automation, consistency, and the possibility to reach high quality in mass production.

With changes in industries, demands for machined parts produced through computer numerical control also increase. CNC machining provides solutions to sectors ranging from aerospace, automotive, medical, and electronics and from prototyping to production. A major advantage of this flexibility is that manufacturers can experiment with material and design and enhance the quality while at the same time keeping to strict standards of quality. In the future, CNC machined parts will continue to be crucial in the development of future manufacturing technologies as a way of improving efficiency and accuracy in manufacturing parts that are used in different industries all over the world.

Types of Machining Processes

Introduction

Machining processes are important in manufacturing components of fine tolerance since they involve material removal from a workpiece. They play a significant role in defining, manufacturing, and finishing the components produced in the industries.

 Starting with some of the oldest techniques such as milling and turning and up to the modern methods such as EDM and even additive manufacturing each method is useful in a certain way. Knowledge of these processes is critical in the selection of the most appropriate technique depending on the material, problem difficulty, and accuracy requirements. In this article, we will discuss the most prevalent categories of machining processes and the uses of these processes in contemporary production.

 

What is Machining?

Machining is one of the manufacturing business processes that involves cutting away material from a workpiece to obtain a wanted profile. This is carried out by employing equipment such as lathes, mills, drills, such instruments that cut, grind, or shape the material accurately. It makes it possible to create elements with thin walls and, on the other hand, thick, robust ones, very often applied in automotive, aviation, and even medicos industries.

Machining is done on metals, plastics, and other materials and it is very important in the production of parts that cannot be produced by other methods. It often ends up using tools like cutting, grinding, or turning to eliminate material to create the component to the specific size, shape, and surface finish.

Turning, milling, and drilling are the common machining processes that are selected based on the targeted geometries of a particular part. These processes enable manufacturers to create everything from basic geometric shapes to designs of increased geometric complexity with great accuracy.

 

12 Machining Processes Explained

Machining is one of the most important activities within manufacturing since it involves shaping components from raw materials. Various kinds of machining are required for various applications based on the material type, part shape, and production volume. This article will provide information on twelve fundamental machining operations, their varieties, advantages, and uses.

 

Turning

Turning is a process through which the workpiece rotates while the cutting tool runs along the perimeter to cut off material. More often this is utilized for forming cylindrical workpieces. Depending on the angle of the tool and where it is held, different shapes are achievable within the program.

Common Types:

● CNC Turning: Turning to utilize computerized numerically controlled turning for accuracy.

● Live Tooling: This is suitable for turning and milling at the same time.

● Turret Lathes: These can be used to produce a high volume of complex shaped parts and components.

Key Benefits:

● This is suitable for round cylindrical jobs and designs that require a significant level of precision.

● High accuracy particularly for long straight parts.

● Economical for both low to high-volume production.

Common Uses:

● Shafts, Bushes, Bolts, and Pulleys.

 

Milling

Machining involves material cutting from a workpiece with the help of sharp tools and among them, Milling is a process in which a rotating cutter is used for cutting the material from the workpiece. The cutter translates and rotates along several directions to make flat or curved shapes or customized shapes. Milling machines are very flexible and one can get parts withcomplicated contour.

Common Types:

● Vertical Milling: The cutting tool by its motion is in a vertical plane.

● Horizontal Milling: The cutter moves horizontally and is most suited for larger parts of the material.

● CNC Milling: Automated operations and Computer-controlled milling machines.

Key Benefits:

● High suitability in making multiple shapes.

● Forces possible the machining of flat, angular, and curved surfaces.

● Suitable for small and big components.

Common Uses:

● Molds, dies automotive components, and fixtures.

 

Drilling

Drilling is one of the processes of making holes in a workpiece by use of a drill which is a rotating tool. It is one of the most frequently used operations in the practice of materials processing and it can be combined with other operations such as turning or milling.

Common Types:

● CNC Drilling: A higher level of accuracy in boring with the help of automatic devices.

● Deep Hole Drilling: Used for making deep and slender access holes.

● Gun Drilling: Designed specifically for making deep, straight, heavy-duty holes in heavy sections.

Key Benefits:

● Relatively faster and cheaper for making holes.

● Suitable for use with most types of stock.

● Excellent stability when aligning the hole and also in regards to the depth.

Common Uses:

● Can be used in the manufacture of engine blocks, aircraft, and structures among others.

 

Grinding

Grinding is the use of an abrasive wheel to employ the wheel’s fast-moving abrasive grains to progressively remove small amounts of stock – either to generate a smoother finish on a product or to provide it with accurate geometric dimensions. It is often applied in the finishing and generation of small clearances.

Common Types:

● Surface Grinding: How to level flat surfaces after flattening them by bringing them to a smooth level.

● Cylindrical Grinding: Fremont manufactures and distributes precision grinding machines for OD (outside diameter) cylindrical workpieces.

● Centerless Grinding: Grinding with no need for clamping of the workpiece.

Key Benefits:

● Perfect for projects that require smooth finishes and tight clearance with hard and brittle material.

● Suitable for use on high-strength materials or when machining difficult materials.

● The process is ideal for creating a very smooth skin on a part without changing the part’s dimensions.

Common Uses:

● Bearing, gears, cutting tools, and these fine parts.

 

Electric Discharge Machining (EDM)

EDM is an unconventional machining process that makes use of electrical discharge to remove material from the workpiece. It is very suitable for hard metals and complicated shapes and is preferred to many other processes that cannot deliver the output required.

Common Types:

● Wire EDM: Blanking or cutting fluids of thin wire shapes are used for intricate shapes.

● Sinker EDM: A shaped electrode is applied to cut deep or fine details.

● Small Hole EDM: Cost-effective solution for accurate hole-making to hard materials.

Key Benefits:

● Suitable for difficult materials as well as complex-shaped sections.

● Has high flexibility with the ability to create geometries of considerable complexity and density.

● No mechanical force is applied, thus reducing part distortion.

Common Uses:

● Molds die, aerospace parts, and tools.

 

Laser Cutting

Laser cutting employs a laser beam to soften or evaporate material off a piece of work. The process is controlled through Computer Numerical Control for better cutting to ensure it is suitable for high-accuracy parts.

Common Types:

● CO2 Laser Cutting: It involves cutting plastics, metal, and wood.

● Fiber Laser Cutting: Suits for cutting metal at higher speed effectively cutting on steel and other ferrous metals.

● Fiber Laser Engraving: Also can be used for engraving and for cutting on metals using a laser.

Key Benefits:

● The high degree of accuracy that dovetails with low scrap rates.

● Capable of cutting many types of material as well as metals and plastics.

● Sharp edges and reducing down on heat inexperienced areas.

Common Uses:

● Thin metal cutting, signage, prototyping, and precision metal parts.

 

Waterjet Cutting

Waterjet cutting is essentially a cutting technique that uses water at a high pressure, and sometimes with additives. Casting is good for materials that can react with heat since it does not produce heat distortion.

Common Types:

● Abrasive Waterjet Cutting: Employed to work on thicker materials such as metals and stone, they are.

● Pure Waterjet Cutting: For cutting inductive materials such as rubber or good crops for instance potatoes.

Key Benefits:

● The heat-affected zone is minimized, so distortion of the material is avoided.

● Can sever through different types of materials.

● Accurate and can work on very thick pieces of leather.

Common Uses:

● Aerospace components, stone cutting, and composites.

 

Surface Grinding

Specific to the binding process is that surface grinding is a kind of grinding process that concentrates on making the surface flat. It utilizes the abrasive wheel to cut through material and. shape or finish it to a specific level.

Common Types:

● Horizontal Surface Grinding: Used for grinding large-sized materials to be processed.

● Vertical Surface Grinding: Interested in finishing the smooth and flat surfaces of the product.

● Plunge Grinding: It is used for deep cutting of narrow areas.

Key Benefits:

● Super for final finishes and where close fits are required.

● Able to work on ferrous and nonferrous materials alike.

● Suitable for use when leveling and surface finish is desirable.

Common Uses:

● Accuracy parts, tool making, and level components.

 

Wire EDM

Wire EDM is the refined kind of EDM in which a thin wire is utilized to cut through the material. It is highly accurate and preferably suitable for generating intricate and fine components, particularly in rigid materials.

Common Types:

● Fine Wire EDM: Designed for finely detailed carving and for making relatively small incisions.

● Heavy Duty Wire EDM: Tough for use on thick materials.

Key Benefits:

● Where special dimensions and work details are required at a smaller scale, high precision is possible.

● An excellent choice for those geometries that require tight tolerances.

● Avoid any forms of mechanical forces on the part.

Common Uses:

● Molds, precise metalwork, and other small articles.

 

Casting

Casting is a process whereby a liquid material is placed or poured into a mold to the required shape. After cooling, the formation of a material in the required shape is completed. It is widely used for the molds that produce large and complicated shapes.

Common Types:

● Sand Casting: Sand molding is used in producing metal parts.

● Die Casting: A mold is filled with liquid metal being under high pressure.

● Investment Casting: Also called lost-wax casting, which is used when the need is for very accurate and highly finished parts.

Key Benefits:

● Most suitable for intricate and big products.

● Economical when used for mass production of the various parts required in a production line.

● Has the ability to create very detailed features.

Common Uses:

Car parts, and machinery parts for mounting applications

 

Stamping

Stamping is a cold working process done by using a die to impress, cut, or bend sheet metal. It is fast and efficient and is well applicable in cases of mass production.

Common Types:

● Progressive Stamping: Molds parts by the use of a sequence of dies that have a progressive nature.

● Deep Drawing: Applied for the production of the pieces with complex undercuts.

● Punching: A kind of stamping that makes holes in the sheet metal.

 

Key Benefits:

● High production rate, that is suitable for mass production.

● Specially useful for creating flat, and even parts of equal thickness.

● Minimal material waste.

Common Uses:

● Car body components, electrical boxes, and stove parts.

 

3D Printing

Selective laser sintering, or direct metal laser sintering, for instance, selectively fuses particles of material to create a part from a digital model. This technique is highly flexible and can make geometries that are hard to accomplish with conventional techniques.

Common Types:

● Fused Deposition Modeling (FDM): Constructs objects from thermoplastic materials in the form of filaments.

● Selective Laser Sintering (SLS): Portable and uses a laser to fuse powdered material.

● Stereolithography (SLA): It also utilizes UV light to solidify every layer of the liquid resin successively.

Key Benefits:

● Especially used in intricate and unique designs.

● Less material wastage, and short cycle time.

● The very little setup involved is good for the short runs.

Common Uses:

● Prototype, special components, orthopedic and dental appliances, and molds and cores.

 

Conclusion

In conclusion, based on the evaluated 12 machining processes, possible solutions for creating required accurate and high-quality components are presented. It illustrates that turning and milling, additive manufacturing, and all other processes are suitable and efficient for different materials, geometries, and production circumstances. Understanding these processes enables the manufacturer to select an appropriate method that suits them for efficiency and effectiveness.

As a leading global CNC manufacturer for precision machining, CNC Yangsen focuses on offering advanced precision machining services for our clients. No matter if your need is accuracy in milling, turning or the most advanced in 3D printing and manufacturing, CNC Yangsen can meet the highest of quality with the right level of accuracy. Don’t you think it is time that we assist you in enhancing your manufacturing processes?

What is Multi-Axis CNC Machining? Definition, Types, Applications, and Benefits

Precision and efficiency drive modern manufacturing. Multi-axis CNC machining has become an essential tool for industries like aerospace, automotive, and medical.

This technology allows manufacturers to create intricate parts with high accuracy while saving time and reducing production complexity. It’s a game-changer for anyone looking to push the boundaries of design and functionality.

What is Multi-Axis CNC Machining? 

Multi-axis CNC machining refers to the use of machines that can move cutting tools or workpieces in multiple directions at the same time.

Unlike standard 3-axis machines, which operate along the X, Y, and Z axes, multi-axis machines add rotational movements. This capability enables the production of complex parts in fewer steps, improving efficiency and precision.

How Multi-Axis CNC Machining Works?

Multi-axis CNC machining relies on the coordinated movement of multiple axes. These machines rotate either the cutting tool or the part itself, enabling the tool to reach and shape areas that are otherwise hard to access.

The process is powered by computer numerical control (CNC) systems. These systems execute pre-programmed instructions to control the tool’s path and movements, ensuring accuracy and efficiency. This automation reduces errors and speeds up production, making it ideal for complex manufacturing tasks.

Step-by-Step Process of Multi-Axis Machining

1. Designing the Part 

The process begins with a clear design. Engineers draft the part, focusing on dimensions, tolerances, and material specifications. A strong design foundation ensures the final product meets the required standards.

2. CAD Model Creation 

The design is transformed into a digital 3D model using computer-aided design (CAD) software. This model serves as the roadmap for the machining process, detailing every angle and feature of the part.

3. Converting CAD to CAM  

Next, the CAD model is imported into computer-aided manufacturing (CAM) software. Here, the machining strategy is defined, and tool paths are created. This step also generates the G-code, which provides the machine with precise instructions on how to shape the material.

4. Machine Setup 

The machine is then prepared for production. Operators load the material, install the necessary cutting tools, and calibrate the machine. Proper setup is crucial for ensuring that the machining process is accurate and runs smoothly.

5. Program Execution 

Finally, the machine executes the G-code instructions to shape the material into the desired part. The cutting tool moves along the programmed paths, carefully removing material and bringing the design to life. Throughout the process, operators monitor the machine to ensure the part meets quality standards.

 

Types of Multi-Axis CNC Machines

Different types of multi-axis CNC machines are designed to meet specific manufacturing needs. Each type has its own unique features and applications, making it suitable for various industries and part complexities.

3-Axis CNC Machining

3-axis machines operate along the X, Y, and Z axes. These machines are suitable for basic cutting, drilling, and milling tasks, where the tool moves only vertically and horizontally.

Applications:

● Simple part geometries

● Prototyping and small-batch production

● Components like plates, brackets, and basic housings

4-Axis CNC Machining

4-axis machines add a rotational axis, allowing the workpiece to rotate around the X-axis. This feature enables more complex cuts and reduces the need for multiple setups.

Applications:

● Circular or cylindrical parts like gears and cams

● Engraving and complex surface machining

● Parts requiring multiple sides to be machined

5-Axis CNC Machining

5-axis machines provide two rotational axes in addition to the X, Y, and Z linear axes. This allows the cutting tool to approach the workpiece from almost any angle.

Applications:

● Aerospace components with intricate geometries

● Medical devices like implants and prosthetics

● High-precision parts requiring complex curves

3+2 Axis CNC Machining

3+2 axis machining involves three linear axes and two rotational axes that are fixed during operation. It provides enhanced flexibility compared to standard 3-axis machining.

Applications:

● Mold and die manufacturing

● Parts with angled surfaces or features

● Mid-complexity components

6-Axis CNC Machining

6-axis machines add another rotational axis, further increasing flexibility. They can handle parts with more intricate designs and reduce production time significantly.

Applications:

● Automotive engine components

● Parts requiring continuous machining from multiple angles

● Precision parts for industrial machinery

7-Axis CNC Machining

7-axis machines add even more mobility, often incorporating tilting and swiveling movements. They are ideal for producing highly complex parts in a single setup.

Applications:

● Intricate aerospace parts

● Surgical instruments

● Components with detailed contours and shapes

9-Axis CNC Machining

9-axis machines combine the features of multiple axes with additional functionalities, often including turning and milling in one machine.

Applications:

● Complex geometries in one operation

● High-volume production

● Precision parts for industries like defense and electronics

12-Axis CNC Machining

12-axis machines are the pinnacle of CNC technology, offering unparalleled flexibility and precision. They combine turning, milling, and drilling capabilities, enabling complete part production in a single setup.

Applications:

● Advanced aerospace and automotive parts

● High-performance equipment components

● Intricate designs for specialized industries

The Main Components of Multi-Axis Machine Systems

Modern multi-axis CNC machines consist of various components working together to ensure precision, efficiency, and flexibility. Each component has a specific role that contributes to the overall operation of the system.

1. Base and Frame: Provides structural support for the machine, ensuring stability during operation. A rigid frame minimizes vibrations and enhances machining accuracy.

2. Spindle: The spindle holds and rotates the cutting tool or workpiece at high speeds. It is a critical component for material removal and determines the precision and surface finish.

3. Tool Changer: Automatically swaps tools during the machining process, allowing for seamless transitions between different operations. This reduces downtime and increases efficiency.

4. Worktable: Supports the material being machined. It moves along designated axes to position the workpiece correctly for cutting.

5. Control Panel: The user interface for programming and operating the machine. It provides real-time feedback and allows operators to adjust settings during the process.

6. Linear Guides and Bearings: Ensure smooth and precise movement of the machine components along the axes. These parts play a crucial role in maintaining accuracy.

7. Drive Systems: Control the movement of the machine's axes. Typically powered by servo motors, they ensure precise positioning and speed control.

8. Coolant System: Cools the cutting tool and workpiece during machining. This system prevents overheating, reduces tool wear, and improves the quality of the finished part.

9. Sensors and Feedback Systems: Monitor the machine's performance, providing data to ensure accuracy and detect potential issues. These systems help maintain consistent quality.

10. CNC Controller: The brain of the machine, executing the G-code instructions and coordinating the movements of all components. It ensures the machining process follows the programmed paths accurately.

These components work in harmony to deliver the precision and flexibility that define multi-axis CNC machining.

 

What Makes Multi-Axis CNC Machining Ideal for High-Precision Parts?

High-precision parts demand accuracy, efficiency, and the ability to handle complex designs. Multi-axis CNC machining excels in meeting these requirements, making it an ideal choice for industries with exacting standards.

Ability to Produce Complex Geometries:

Multi-axis machines can cut intricate shapes and contours that are impossible or highly challenging with standard machining. For example, creating a turbine blade with complex curves and precise dimensions is straightforward with a 5-axis CNC machine. 

Improved Surface Finish and Precision:

With fewer setups and continuous machining, multi-axis CNC machines deliver superior surface finishes. This precision reduces the need for post-processing and ensures parts meet exact specifications right out of the machine.

Reduction in Setup Time and Manual Intervention:

Multi-axis machining eliminates the need for repositioning parts during the process. This saves time and reduces errors, especially for parts requiring machining on multiple faces.

Enhanced Efficiency and Cost-Effectiveness:

While multi-axis machines require a higher initial investment, their ability to handle complex parts in fewer steps reduces labor costs and increases throughput. For example, producing aerospace brackets or automotive engine parts becomes faster and more economical.

 

What Are the Limitations of Multi-Axis CNC Machining?

While multi-axis CNC machining offers significant advantages, it also has some limitations that are important to consider.

Higher Initial Costs

The advanced technology in multi-axis machines comes with a premium price tag. The costs of purchasing, maintaining, and repairing these machines are higher than traditional CNC equipment, making them a significant investment for smaller businesses.

Steeper Learning Curve

Operating and programming these machines require skilled personnel. Training costs can add up, and finding operators proficient in multi-axis machining can be a challenge for some companies.

Complexity in Maintenance

With more moving parts and advanced systems, multi-axis machines require regular maintenance to function optimally. Downtime for repairs or calibration can disrupt production schedules.

Material and Part Limitations

Some materials or designs may not be suitable for multi-axis machining due to tool limitations or cutting constraints. For instance, certain metals might cause excessive wear on cutting tools during complex operations.

Space Requirements

These machines are often larger than traditional CNC equipment and need dedicated space in the workshop. For businesses with limited floor space, accommodating a multi-axis machine can be challenging.

 

Applications of Multi-Axis CNC Machining

Multi-axis CNC machining has transformed modern manufacturing by enabling the production of complex, precise, and high-quality components. Its versatility makes it indispensable across several industries. Here’s a closer look at its applications, complete with examples and practical insights.

Aerospace Industry 

The aerospace industry demands parts with extreme precision and durability. Multi-axis CNC machining allows manufacturers to create intricate components like turbine blades, structural panels, and engine parts.

For instance, a turbine blade has complex curves and tight tolerances that are critical for maintaining efficiency in jet engines. Multi-axis machines can mill these blades from a single block of material, reducing waste and improving structural integrity. Additionally, the ability to machine lightweight alloys like titanium and aluminum makes this technology ideal for the aerospace sector.

Automotive Industry

In the automotive world, speed and precision are everything. Multi-axis CNC machines produce engine components, transmission housings, and prototypes with unmatched accuracy.

For example, an engine cylinder head requires precise drilling and contouring to ensure proper fit and performance. A 5-axis CNC machine can handle this in one setup, eliminating errors from manual repositioning. This capability also speeds up prototype development, helping car manufacturers bring innovative designs to market faster.

Medical Industry

The medical field relies heavily on custom parts and devices tailored to individual needs. Multi-axis CNC machining is perfect for creating prosthetics, implants, and surgical instruments.

Take a hip implant as an example. These devices must have smooth surfaces and precise dimensions to fit perfectly and minimize discomfort. Multi-axis machines ensure these high standards are met, reducing the need for extensive finishing work. Similarly, tools like surgical drills or bone saws require intricate features that multi-axis machining can produce with ease.

Other Industries

Multi-axis CNC machining extends its benefits to numerous other sectors, including:

● Mold Making: Creating injection molds with complex geometries for consumer goods, packaging, and industrial products. For instance, molds for plastic bottles or electronic device casings often require multi-axis machining for intricate designs.

● Electronics: Precision machining of heat sinks, circuit board housings, and other components that demand tight tolerances.

● Energy: Manufacturing components for wind turbines, solar panels, and power generation equipment, where reliability is critical.

 

How to Choose a Multi-Axis Machine for Your Project?

Selecting the right multi-axis CNC machine depends on your project’s specific requirements, including part complexity, material, production volume, and budget. Here’s a guide to help you make an informed decision.

1. Understand Your Project Requirements

Start by defining the details of your project. Ask yourself questions like:

● What is the complexity of the parts you need to produce?

● What materials will you be machining?

● What is the desired precision or tolerance level? For instance, a project involving intricate aerospace components may require a 5-axis machine, while simpler designs may only need 3-axis or 4-axis capability.

2. Evaluate Part Size and Geometry

The size and geometry of the parts influence the type of machine you need. Larger parts or parts requiring machining on multiple sides might necessitate machines with more axes and a larger work envelope.

For example, manufacturing a mold with angled surfaces might call for a 3+2 axis machine, while a small, intricate medical device might require a 6-axis machine.

3. Consider Production Volume

Production volume plays a big role in choosing the right machine:

● Low Volume/Prototyping: A 4-axis or 5-axis machine may suffice for small batches or prototypes that require flexibility and precision.

● High Volume: For mass production, machines with higher automation levels, like 9-axis or 12-axis models, can handle complex parts in fewer steps, reducing overall production time.

4. Assess Material Compatibility

Different materials have different machining requirements. For instance:

● Harder materials like titanium or stainless steel may require machines with robust spindles and cutting tools.

● Softer materials like aluminum or plastic may be easier to machine, requiring less powerful equipment.

Choose a machine capable of handling the specific material properties to avoid wear and ensure efficiency.

5. Factor in Budget and ROI

Multi-axis CNC machines are an investment, so it’s essential to balance upfront costs with long-term benefits. Machines with advanced capabilities may cost more initially but can save on labor, reduce setup time, and increase throughput.

Consider the return on investment (ROI) over time, especially if your project involves high-value or high-volume production.

6. Evaluate Programming and Operator Skill Requirements

More advanced machines require skilled operators and programmers. If your team lacks experience with complex CNC systems, you may need to budget for training or hire skilled professionals.

Alternatively, simpler machines may be a better fit for smaller teams or companies with limited CNC expertise.

7. Look at Brand and Support Services

Choose a reputable brand that offers reliable support and service. Manufacturers like Yangsen provide technical assistance, maintenance, and training to ensure your machine operates smoothly over its lifespan.

8. Prioritize Scalability and Future Needs

If you anticipate expanding your operations or taking on more complex projects, investing in a versatile machine with additional axes or features might be a wise decision.

This ensures your equipment can meet evolving demands without needing frequent upgrades.

Example Scenario: Choosing a Machine for a Medical Device Project

Suppose your project involves creating surgical instruments with detailed contours and tight tolerances. A 5-axis CNC machine would be ideal due to its precision and ability to machine complex geometries in a single setup.

If you’re producing a large batch, a machine with a tool changer and automation features would further improve efficiency.

 

Conclusion

Multi-axis CNC machining has revolutionized modern manufacturing, offering unmatched precision, flexibility, and efficiency. From aerospace and automotive parts to medical devices and beyond, it enables the creation of intricate components with superior quality.

While it comes with higher upfront costs and a steeper learning curve, the benefits far outweigh these challenges for projects demanding high precision and complex geometries.

When choosing a multi-axis machine, understanding your project’s requirements, material considerations, and production goals is key. Investing in the right machine can streamline operations, reduce production time, and deliver exceptional results.

Whether you’re crafting a prototype or scaling for mass production, multi-axis CNC machining is an invaluable tool for pushing the boundaries of design and manufacturing.

By leveraging this technology, you can achieve greater efficiency and unlock new possibilities for your projects.

What Is a 5-axis CNC Machine?

The machining industry continually adapts to market demands. There is always a demand for speed, capacity, accuracy, and a skilled workforce, as well as for reducing the involvement of human error. This is so for all industries and shop sizes. Modern technology calls for more complex parts, which is evident in several ways. New machines have been developed to address these needs, particularly 5-axis ones. 5-axis CNC machines employ the machining center's X, Y, Z, A, and B axes. This enables tools to get to a part's five sides without additional setups. To picture the 5-axis movement, hold an object in front of you. Place the tip of a pen touching the object but slightly away from it. Swing the object from side to side and up and down. Draw the pen up, down, side to side, in and out simultaneously. This demonstrates how 5-axis machines can move and work on parts. This article covers the core details of the working mechanism, pros and cons, and practical tips for maximizing the efficiency of 5-axe cnc machines.

 

1. How Does a 5-axis CNC Machine Work? 

A 5-axis CNC machine is a CNC(Computerized Numeric Control) machine that operates based on instructions given digital instructions. As the name implies, it can move or rotate the cutting tool and the workpiece in five axes, namely in the X, Y, Z, A, and B directions. These are the three linear movements in the X, Y, and Z directions and two rotary movements in the A and B directions. The machine accurately creates the intended parts and can produce intricate structures. Additionally, the 5-axis machines are expedited with (the GD&T call-out) system for creating datum components in a single operation. Also, this technology minimizes the number of setups and excessive manual labor requirements. Regarding the axis;

● The A-axis turns typically in the X-axis direction, allowing the tool to be angled.

● The B-axis rotates around the Y-axis to enable rotations on a vertical axis of the structure.

● In complex operations, the changes in the angle can be from -120 to 120 degrees.

● The Z-axis is used in the vertical plane movements and, therefore, controls the depth.

● This makes machine-complex 3D shapes and contours possible since the workpiece can move in all directions simultaneously.

 

However, 5-axis machines are applied in the aerospace, automotive, and medical industries. They assist in the creation of small tolerance parts down to +/-0.005’’. There are various steps for optimally operating 5-axis cnc machines.

1.1.Design Phase

The process starts with generating a virtual 3D model of the part. Engineers and designers employ computer-aided design software such as SolidWorks or Autodesk Inventor. The 3D model replicates the intended part with all the dimensions and characteristics on an absolute scale. CAD software is also helpful in visualizing the part before the actual production of the part is made. At this stage, the designer can make corrections and adjustments to the design. High precision of the 3D model is essential for further CNC machining. The completed model is then exported to a file format that other programs can process. This model is used as a guide to the actual machining process that is to be carried out on the workpiece.  

1.2.Conversion to G-Code

The 3D CAD model of the part is then transferred to CAM software. CAM software translates the 3D model into G-code. G-code is a set of instructions written in computer language that is used in machining. The code contains information on feed rate, speed, and tool path. G-code provides accurate and standard operations in machining processes. This step helps in closing the gap between the actual design and the physical implementation of the design. It is crucial to properly convert the model to G-code for the proper machining to be done on the model.  

1.3. G-Code Instructions

G-code determines the motion of the cutting tool along the X, Y, and Z directions. It also controls the movement of the worktable in the A and C directions. The CNC machine then implements these instructions to the letter. Every line in G-code is associated with a particular action or motion of the machine. The code also ensures the tool is properly functioning and is not jerky. In addition, it helps develop intricate forms and characteristics. The instructions are carried out one after the other. It is vital to program G-code correctly to get the right outcome.  

1.4. Machining Process

The CNC machine then begins to be machined according to the G-code fed into it. The cutting tool rotates along the planned paths to create the part. The worktable can be turned to enable access to the different sides of the part. This motion is achieved in parallel to guarantee the best results in terms of material elimination. The high precision of the machine characterizes the process throughout the process. Sensors and feedback systems supervise the machining operation. Corrections are made automatically to ensure the readings are as accurate as possible. The last part is made to precise measurements as intended by the designer.

2. How To Maximize The Effectiveness of 5-Axis CNC Machines?

Optimization of 5-axis machining is all about planning and the use of the most effective techniques. Here are key strategies to help you get the most out of your 5-axis machining operations:  

2.1. Gather Comprehensive Information

Gather as much information as possible to decide between the 3-axis- and 5-axis machining. Ensure that the data given to you by your customer is accurate. Look at the part carefully to determine whether it is necessary to conduct a pretest to achieve the required level of accuracy. Carry out a cost evaluation to determine which machining techniques are cheaper. This means that proper initial planning assists in formulating the right decisions.

2.2. Utilize Simulation Software

Ensure that simulation software is optimized to check processes before moving them from the CAD system to the machine. Simulation helps determine areas of interference that are not easily imaginable in 5-axis machining. The software can accurately control tool length, interference, and part size. Such a strategy saves a lot of money that would have been spent on rectifying the mistakes and guarantees efficiency.

2.3. Innovate Workholding Techniques

Revise your workholding strategy and use methods that reduce the number of setups and handling operations. More access to all sides of the part is achieved by innovative workholding solutions, which increases production output. Modern methods improve precision and the general quality of your products. Optimizing the work-holding process can increase productivity to a large extent.  

2.4. Optimize Tooling Choices

Choose tools that are made for 5-axis machining, especially for high-speed operations. The idea is to make the last step of the part as automatic as possible. Proper tools make work easier and produce quality finishes for the products being worked on. The use of special tools when carrying out machining operations can lead to a significant improvement in the results of your work.  

2.5. Implement Kinetic Analysis

After this, kinetic analysis will be performed to enhance the precision of each part. This analysis assists you in determining the orientation of the ends of the cutting tool relative to the axes’ rotation points. The kinetic analysis should be done before the precision applications for better results. It helps enhance the machining process and get the desired specifications.

2.6. Embrace Technological Advancements

The advancement in technology has seen the application of 5-axis machining increase. Machining equipment is selected based on the work to be done and the production goals set. Ensure that you work hand in hand with the clients to establish their expectations and determine the most suitable machine. Updating oneself with the current technology is vital in ensuring one is relevant in the market.

Accumulating all the necessary data, using the simulation programs, developing the new approach to workholding, selecting the most appropriate tools, and calculating the kinetic parameters are the steps that should be taken. Adopting technological solutions and appreciating the client's needs help in providing quality services all the time.

 

3. 5-Axis Trunnion Vs. Swivel: Difference In CNC Configurations & Operation Styles

Let’s evaluate the distinctions between these two styles;

3.1. Trunnion Style:

Trunnion-style 5-axis cnc machines work with the A axis rotating around the X axis and the C axis rotating around the Z axis. This arrangement enables the machine head to be fixed while the table translates to cater to the rotary axes. It performs well in capacity and throughput, in the ability to depolarize without moving the head of the machine, and in undercutting that is required for intricate shapes of the part.  

3.2. Swivel Rotate Style:

In contrast, the Swivel Rotate style entails the B-axis swiveling around the Y-axis and the C-axis swiveling around the Z-axis. During the machining process, the table remains horizontal. This setup helps machine significant parts and uses short tools to increase the machining rate.

 

4. Different Types Of 5-Axis CNC Machines

The 5-axis CNC machines are appropriate in processes that require speed and optimization of the operations. These machines are of many types, and the position of the rotary axes mainly determines the type.  

4.1. Head/Head Configuration

In this 5-axis CNC machine type, the rotary axes are contained in the head of the machine. This design reduces the chances of the tools coming into contact with the spindle head of the machine since the 5-axis configuration is done on another table. The machining process involves the apex moving in a rotational or translational manner while the table is fixed to support the workpiece.

Head/Head CNC machines are very efficient in producing large parts because they can move about a specific item during the operation. However, this design may have limitations regarding the range along the rotary axes.  

4.2. Table/Head Configuration

The Table/Head configuration, on the other hand, has rotary axes located on the head and the table. The head has one rotary axis, and because of the component position, it has minimal movement. However, the rotary axis on the table is freely rotated in any direction, which makes it easier to carry out the type of operations on the material.

The other advantage of the Table/Head setup is that there is always a circulation of parts; therefore, problems such as chatters are less likely to happen. Nevertheless, there is a limitation of the rotary axis on the table, which limits the kind of parts that can be manufactured efficiently.

These configurations aim to meet various requirements in the manufacturing sector to provide the optimal solution for the accurate and effective execution of machining tasks.

 

5. Advantages of 5-axis CNC Machining  

5-axis CNC machining offers several advantages that make it indispensable in modern manufacturing. Here are some advantages of 5-axis CNC machining that place it among the essential technologies in the contemporary manufacturing industry:

1. Streamlined Setup and Operation: This differs from conventional machining techniques, which require multiple sets to manufacture a single part; 5-axis CNC machining can work on five faces of the workpiece simultaneously. This reduces the time taken to set up and allows the creation of complex shapes all at once.

2. Versatility in Complex Shapes: 5-axis machining has extra axes; with these axes, the machine can get to positions and planes that lesser axes cannot access. This capability is beneficial in industries where the part's geometry is very complicated.

3. Enhanced Accuracy and Consistency: Because there are a few points where manual adjustments and setups can be made, the 5-axis CNC machines will likely go right in the machining process. This leads to the generation of parts of the same quality and dimensions for the subsequent manufacturing operations.

4. Efficient Material Removal: This is because it is possible to have maximum tool utilization throughout the machining process, resulting in high cutting speeds and material removal rates. Such efficiency is reflected in such parameters as cycle time and manufacturing cost.

5. Superior Surface Finishes: Thus, because the workpiece is always well positioned about the cutting tool, 5-axis machining provides better surface finishes. This means that no other finishing processes need to be done, which cuts down on costs and time.

6. Cost-effectiveness and Productivity: 5-axis CNC machining may be expensive at the initial stages, but in the long run, it is cheaper since set-up time is eliminated, tools have longer cycle time, and little or no scrap. It also increases the total production because it can simultaneously make a part in several stages.

 

6. Disadvantages of 5-axis CNC Machining

Similarly, like other manufacturing techniques, 5-axis CNC machining has its advantages.

1. High Initial Investment: The initial setup is costly to acquire a 5-axis CNC machine and educate the personnel on how to use the machine. However, for other machining technologies, the hardware, software, and training costs could be higher in the initial stage.

2. Complex Programming Requirements: As observed, working on a 5-axis CNC machine means working in space dimensions and tools to be followed. Thus, it is necessary to define the space dimensions and paths of the tools. For better outcomes, one should have adequate knowledge of CAD/CAM software and the functioning of the machines.

3. Skilled Labor Requirement: However, it should be noted that the work with a 5-axis CNC machine is carried out by qualified personnel. The process of acquiring and managing competent staff may sometimes be a challenge, hence high operating costs.

4. Machine Utilization Challenges: To get the best of it, one must be very familiar with all the axes of a 5-axis CNC machine. This may result in the machine's non-provision of training or programming; therefore, the machine may be underutilized.

5. Maintenance and Service Needs: It should also be noted that due to the axes that are mounted on the 5-axis CNC machines, they may be more prone to wearing off and thus may need frequent servicing and adjustment. This is under operating expenses and time that could have been used in production if the management of the material was efficient.

6. Adaptation to Specific Applications: However, one has to note that 5-axis machining is typically effective; however, it cannot be used for all types of parts or materials. Some geometries or material properties may be complex to machine conventionally for the following reasons.  

What Types of Parts Can be Machined By a 5-axis Machining Center?  

5-axis CNC machining is applied chiefly where it is necessary to get complex shapes and contours for the part. Some of the components that are good to be machined using 5-axis machining include the following:

Special-Shaped Parts 

The equal force cannot be applied in the machining of concave parts with complex geometry, such as points, surfaces, and lines, through conventional processes. However, 5-axis machining makes this more accessible and precise by using multi-station points, making it easy to cut such shapes.  

Box Type Parts

Conventional machining practices are very demanding when it comes to machining box-shaped parts because of the multiple clamping and alignment. The 5-axis machine can operate on several planes simultaneously, which is beneficial when creating these box-type components.

Disc Parts

5-axis CNC machining is perfect for parts used in UAVs (Unmanned Aerial Vehicles). It is particularly suitable for the processing of plate parts, especially for the end-face or radial distribution holes. It is also ideal for making motor covers. The position of the holes in the machine determines whether a horizontal or a vertical machining center will be used.

Complex Surface Parts

Automotive, marine, and energy industries need parts with a surface finish that cannot be achieved by ordinary cnc machines. 5-axis machining is applied in the production of such parts as spherical ones, turbine engine blades, marine propellers, and impellers. This is made possible by the multiple axes of the machine that enable the making of such surfaces.  

 

7. Get Precision Engineering Solutions From CNC Yangsen

CNCYangsen offers high-quality 5-axis CNC machining services to the aerospace, medical, and electronics industries. We can machine various materials like titanium alloy, aerospace aluminum, stainless steel, and engineering plastic because of the technological advancement in our production line and the professional team. We use modern technology and quality assurance measures that conform to the ISO 9001 standards to avoid this.  

 

8. FAQ

Q1. How does five-axis CNC machining help in enhancing the accuracy of the part?

These systems control the machining parameters in real time, and the degree of variability is as low as ±0—005 mm for linear dimensions and ±0.1 degrees for the angular features.

Q2. What types of material can be machined with the help of 5-axis CNC technology?

Our specializations are in high-strength materials like titanium and Inconel, aluminum alloys, stainless steel, and other engineering-grade plastics like ABS, PLA, Nylon, and Delrin.

Q3. What surface finish options are available at Yangsen?

Due to advanced tooling and machining technologies, CNCYangsen can provide surface finishes of Ra 0.4 µm (16 µin). This capability is handy in applications with high resolution and low post-processing levels.

Q4. How does CNCYangsen ensure quality in 5-axis CNC machining?

At CNCYangsen, quality control is a process where the product is checked at some point in the machining process. We also use other modern measuring instruments, such as CMMs, to check the measurements of the parts and ensure that they meet the required standards. This commitment to quality is well illustrated from when a product is designed to its inspection time before it is taken to the market.